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SUMMARY 

A proof is given of Golay’s equations for chromatography in an uncoated (or 
thinly coated), open-tubular column. The new derivation is exact and it is thus shown 
that it is not necessary to neglect some terms in the appropriate equations, as has been 
done in previous proofs. Furthermore, the proof is given for the situation where the 
rate of adsorption on to and desorption from the tube walls is not considered to be 
infinitely fast as was previously discussed. The effect of comparatively slow 
equilibration of material between the flowing medium and the tube wall is to increase 
the width of a peak, but not to change the average degree of retention. 

INTRODUCTION 

The theory of chromatography in an open tube was considered by Golay in 
1958l and his proof is reproduced in many textbooks on chromatography. The 
problem is a special case of the theory of dispersion of material in a medium flowing in 
a tube which has been studied for a variety of circumstances; originally by Westhave? 
for the concentration of a potassium isotope by countercurrent electromigration and 
later by a number of authors whose papers have been reviewed recently3. 

In Golay’s treatment, the appropriate differential equation and boundary 
condition are manipulated and it is then asserted that certain terms are comparatively 
small and they are therefore neglected. While investigating a related but more complex 
problem4 (the dispersion and chromatography of hydrogen atoms in a flown gas’) it 
has been found that it is not necessary to make these approximations and that Golay’s 
ultimate equations can be proved exactly. This paper sets out the exact proof with one 
additional complication. In the proof below we do not assume, as did Golay, that the 
equilibration of material between the carrier and the stationary walls is instantaneous, 
but allow it to occur at a finite rate. This adds an extra term to Golay’s equation for the 
peak width, which tends to zero as the rate of equilibration tends to infinity. 

The equation which governs this problem, and from with Golay begins is 
treatment, is the general diffusion equation 

af 
- = U .(DUf) - v. Oh at (1) 
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where V is the differential operator,fis the local and instantaneous concentration of 
the material being transported, D is the diffusion coefficient, and v the velocity of the 
medium at the particular point in the column. In the present paper, as in Golay’s 
treatment, we consider a circular column in which there is streamline (Pouisseulle or 
laminar) flow with no “slip” of the boundary layer along the tube wall. 

We also assume, as did Golay, that the pressure is constant along the column (i.e. 
the gas viscosity coefficient is tending to zero) and consequently the diffusion 
coefficient and average velocity of the carrier is constant. This will certainly not by the 
case in open-tube chromatography, where a drop of one atmosphere pressure across 
a long column of 100 m is common. But, because the fractional drop in pressure over 
a one metre length of the column is small, it is believed that the results for a constant 
pressure model can be applied to the situation of a pressure drop with good 
approximation. 

The column is a cylinder, and the cylindrical coordinates r, 19 and z are used. It is 
assumed from the outset that the concentration of material is independent of the 
azimuthal angle 8. It can be shown4 that, if this is not the case initially it will rapidly 
become so. Thus,f = f( r,z,t). In the new coordinates and making all the assumptions 
given above eqn. 1 becomes 

a!f -=Dg+D;-+$2vo(1-$!$ 
at 

where r0 is the column radius, and v, is the average velocity of the carrier. The 
expression 2v, [ 1 - (r”/rz)] gives the variation of velocity across the column from zero 
at the walls to 2v, at the centre. 

This differential equation has to be solved in conjunction with a boundary 
condition which for Golay’s treatment, assuming rapid equilibration, was 

_Daf=r,k’f 
ar 2 at’ (3) 

where k’ is a constant which was assumed to be the ratio of the amount of material on 
the tube wall to that in the carrier. Golay solved eqn. 2 with the condition given in eqn. 
3 by manipulating the equations and using his insight into the problems to neglect 
certain terms, whch he asserted were small. H’e finally obtained the correct results that 
the average velocity (v,,) of the material is given by 

vo 
V -- 

av - 1 + k 

and the rate of increase of the mean-squared width of the peak of material is equal to 

20 rzvz 1 + 6k’ + l(k’)2 

l+k +240. (1 + k)3 
(5) 
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BOUNDARY CONDITION FOR FINITE RATES OF EQUILIBRATION 

It is first necessary to obtain the boundary condition that is appropriate when 
adsorption and desorption are not fast. Let k, be the rate of adsorption per unit area 
per unit concentration in the carrier near the surface, kd the rate of desorption per unit 
area per unit surface concentration, and fS the surface concentration. By Fick’s law the 
flux of molecules near the surface is equal to -D(afllar) and so at r = r0 

-D$-= kJ-- kdfs. 

The change of surface concentration will be equal to the same quantity; 

ali L=k4f-kdfs 
at 

Elimination offs from eqns. 6 and 7 gives 

D g + k, ; + kdD $ = 0. (8) 

This is the boundary condition that we seek. As will be shown later this boundary 
condition becomes identical to that used in Golay’s derivation and eqn. 8 becomes eqn. 
3 as k, and kd become large in the rapid equilibration limit. 

EQUATIONS FOR THE MOMENTS 

Eqn. 2 is difftcults to solve because the variables are not separable. We therefore 
turn to the method of moments, first used by Aris6 in this context for a similar but 
simpler problem. We define thepth moment of the distribution of the injected material, 

cp, by 

m 

c,(r,t) = s f(r,z,t)zPdz (9) 

-‘W 

We will be interested in the zeroth, first and second moment given by p = 0, 
1 and 2 in eqn. 9. These will respectively give information about the total amount of 
material, its average flow-rate, and its average width. It should be noted that the 
moments, cp, depend on the radial coordinate r. They refer to the distribution of 
material in longitudinal elemental filaments inside the column. 

We also define moments averaged over the column cross-section, mp by 

I 

mp(t) = 212 
s 

c,(r,t)rdr (10) 

0 
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m, wil be the total amount of material in the column, which will expect to be constant. 
ml/m, will give the average distance of the material along the tube and will give 
information about chromatographic retention. m2/mo will give the mean-squared 
distance of the material from the beginning of the column and thus [mz/mo - (ml/mJ2] 
will give the mean-squared distance of the material from its average position, i.e. the 
mean-squared width of the peak. 

The calculation is carried out as follows. Equations are obtained for the 
moments c,, and solutions for co, cl and c2 are found. The moments mo, ml and m2 are 
then calculated from the solutions for c,,, cl and c2. To obtain equations for the 
moment cpr both the differential eqn. 2 and its boundary condition (eqn. 8) are 
multiplied by P’dz and integrated from -co to + co to give, respectively 

$J = D;g(+) + h.(1 - ;)pcp_l + Dp(p - I)+2 

and 

(11) 

Eqn. 11 was obtained using integration by parts and also assuming that f(r,z,t) --f 0 as 
z + f co. Equation 11 is a general equation for the moments cP, which must be solved 
in conjunction with its boundary condition’3. The most general solutions are quite 
complex, but a full analysis shows that only parts of the solutions are important even 
a very short time after injection of the material on to the column5. These are the 
solutions that are practically important and that are given below. 

SOLUTIONS FOR THE MOMENTS co AND WI, 

The equation for c, is (eqn. 11) 

ac, = D!“r?? 
at r ar ar 

and its boundary condition (eqn. 12) at r = rO, is 

(13) 

(14) 

These equations are satisfied by 

c, = A (15) 

where A is a constant, independent of r and t. This shows that there is a solution where 
the total amount of material in a longitudinal filament in the open-tube column is 
constant and the same in all filaments of the same cross-sectional area. There is 
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therefore a steady-state solution where there is no net radial flow of material (although 
there is in fact radial flow at particular points in the column which averages to zero). 

Application of eqn. 10 to the solution (eqn. 15) gives also 

m, = nr:A (16) 

and m,, the total amount of material in the tube, is also as expected, a constant, 
independent of time. 

SOLUTIONS FOR THE MOMENTS c, AND m, 

The equation for cl, obtained from eqn 11 after substituting for c,, is 

$=D;#)+2Av,(l -$) (17) 

and its boundary condition (eqn. 12) at r = rO, is 

As can be shown by substituting into both equations, a solution for cl is 

Cl =B+A$$-2(11;;)$]+A-+l 

(18) 

(19) 

where B is another constant and k’ is defined by 

k’ = 2k,/r,kd (20) 

We shall show later that k’ is identical to the normal chromatographic retention 
coefficient. 

The moment ml can then be calculated using eqn. 10 to be 

m,(t) B _ Av,r? 2 + 5k’ Av, - = - . 
rcr,’ 240 l+k’+l+k’[ 

Using the boundary condition that ml = 0 at t = 0, then 

B=Av,r,2 2 + 5k - . 
240 l+k 

(21) 

(22) 

(23) 

and 

Avo 
ml(t) = nr,2 ~ 

1 +k’l 
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and hence 

(24) 

as obtained by Golay. Using this value of E, the equation for cl becomes 

~~=~[3~-6(~1+$‘)~+(~1++;)]+~~ (25) 

SOLUTIONS FOR THE MOMENTS c2 AND m2 

The equation for c2, obtained from (eqn. 11) after substituting for c, and cl, is 

ac2 - = Df-$$ + 

:4ro(l -~~~~[3~-6(~)~+~~,+~~~+2RD (26) 

and its boundary condition, at r = r,,, is 

Da2c2 ac2 
m+ka$ + Dk,,--0 

ar 
(27) 

As can be shown by substitution, a solution for c2 is the following 

ca=C+A 
k’ 2 v, k’ v,2ri _++-.~--. 3 + 16k’ + 27(k’)2 + 20(k’)3 

l+k’ 2Dk,, (1 +k’)3 96D2 (1 +k)3 

v: 5+19k’+17(k’)Z 

(1 +k’)2 
LT!L.E)r6+(&)rB+ 
144D2ri 1 +k 

This is a complex function of both r and t, but m2 can be calculated from it using eqn. 
10 to be 

rzvz 1 + 6k’ + 1 l(k)’ Av,2 
*p 

(1 +k>3 1 t + (1 +k’)2t2 

(29) 
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In this equation, all the constants independent of time have been lumped together in 
m,(O), the second moment of the peak when injected. The quantity mz/m,, - (ml/mJ2, 
which gives the mean squared width of the pulse is thus given by its initial value plus the 
quantity 

20 2v,z k 

[- 

rfv,’ .- 
l+k’ +z (1+k’)3 +%’ 

1+6k’+ll(k’)2 t 

(1 +k’)3 1 (31) 

Of the three terms in the square brackets, the first and last are identical to those 
obtained by Golay and given by eqn. 5. 

THE CHROMATOGRAPHIC RETENTION COEFFICIENT, k 

So far the quantity k’ has been defined by eqn. 20 in terms of k, and k,,. In this 
section it will be proved that in a chromatography column k’ is equal to the ratio of the 
amount of material adsorbed on the walls to that in the carrier. For a stationary gas in 
a closed tube, which has reached equilibrium it is easy to see that this is the case. The 
concentration will be uniform throughout the tube and the rates of adsorption will be 
equal at equilibrium and 

k$= kdfs (31) 

In a column of length I the ratio of the total amount of material on the wall to that in 
the gas will be given by 

which from eqns. 31 and 20 is equal to k’. 
For a moving carrier we need to investigate 

a function of z and t. It is given by eqn. 6 as 

Multiplying by dz and integrating between _+ co gives 

‘w 

s ,f,(z,t)dz = $&,,t) - ; 
d [ 1 T r=r. 

(32) 

the surface concentration as 

(33) 

The total amount of material on the surface is therefore given by 

(34) 

s k 
2nr, f,(z,t)dz = 2nr,“A 

kd 
(35) 

-CC 



68 A. A. CLIFFORD 

since c, = A is a constant. The ratio of this to the total amount of material in the 
carrier, m,, (given by eqn. 16) is therefore 2k,/r,k,, = k’, in a moving carrier also. 

DISCUSSION 

The equations for open-tube chromatography at constant pressure have been 
solved without approximation. The solution given is not the most general one, but it 
has been shown elsewhere4 that it is the only solution that is stable. The final 
expressions obtained both for the rate of elution and for the dispersion of material are 
basically those given correctly some time ago by Golay using an approximation 
method. 

In this treatment, however, it has not been assumed that the rate of equilibration 
of material between the carrier and the surface is infinitely rapid. This has been found 
not to affect the degree of chromatographic retention, but increases the rate of 
dispersion (or spreading) of the peak. The rate of dispersion is given by eqn. 31 and 
contains three terms. The first, 20/(1 + k’), arises from longitudinal diffusion. The 
third term, 

rzvf 1 + 6k’ + ll(k’)* 

240’ (1 + kr)3 
(36) 

represents dispersion due to the variation of velocity across the column, which is 
reduced by radial diffusion. The second term is a new one due to the finite rate of 
adsorption and is equal to 

2v,2. k v,2ro (k’)* 

k,, (1 + kr)3 = k,‘(l + kr)3 (37) 

The effect arises from the variance of the time spent by molecules of the material on the 
surface. The more rapid absorption and desorption is for a given k’, the more times 
a molecule absorbs and desorbs as it passes through the column, and the closer is the 
time spent by that molecule on the surface to the average. Thus for rapid equilibration 
the term in eqn. 37 will disappear and eqn. 3 1 will resemble Golay’s original expression 
(eqn. 5). At the same time the boundary condition given in eqn. 8 will reduce to Golay’s 
boundary condition (eqn. 3). 

Finally, it was shown that the ratio of the total amounts of material on the 
surface to that in the carrier is given by 

k’ = 2k,/r,kd 

for a moving carrier where k, and kd, the rate constants for adsorption and desorption, 
are defined in the section boundary condition for finite rates of equilibrium. This is in 
spite of the fact that the longitudinal distribution in the carrier varies with the radial 
parameter and is, in general, different again from that on the surface. 
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